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“Dynamics” — Motivating a new “chapter”
‣ Sending packets through the Internet — 

‣ What are the design principles to make this happen? 

‣ How do we make it fair to all best-effort connections? 

‣ How do we support performance guarantees to those who need them? 

‣ But intuitively, those who wish to have more “priorities,” “weights,” or 
“guarantees” need to, somehow, pay a price! 

‣ But how?
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This involves game-theoretic reasoning
‣ All “peers” in a network make their individual decisions to maximize their 
own benefits 

‣ To make it more general — 

‣ Rather than simply choosing a route in isolation, individual senders can evaluate 
routes in the presence of the congestion, resulting from the decisions made by 
themselves and everyone else 

‣ In Part III, we will develop models for network traffic using game-theoretic ideas 

‣ And show that adding capacity can sometimes slow down the traffic on a 
network
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Viewing networks from a different perspective

‣ Traditionally, we view networks from the perspective of its underlying 
structure and architecture 

‣ Now, we switch to look at an interdependence in the behaviour of the 
individuals who inhabit the system 

‣ The outcome for anyone depends on the combined behaviour of 
everyone 

‣ Such interconnectedness at the level of behaviour can be studied 
using game theory
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Another example of “dynamics” —
Google 

96% of the revenue ($64.4 billion in a 
quarter) is derived from advertising





Adwords: keyword-based advertising



How does Google decide how much to 
charge for each ad?



To understand how ads are priced, we need 
to understand the fundamentals of 
auctions 



To understand auctions, again, we need to 
understand the fundamentals of games 



Textbook 
Networks, Crowds, and Markets 

(D. Easley and J. Kleinberg,  
Cambridge University Press, July 2010) 

Starting from Chapter 6 

Freely downloadable from: 
http://www.cs.cornell.edu/home/kleinber/networks-book/ 

http://www.cs.cornell.edu/home/kleinber/networks-book/


Required reading: Chapter 6



What is a game? — A first example

‣ Suppose you are a college student 

‣ Two pieces of work due tomorrow: an exam and a 
presentation 

‣ You need to decide: study for the exam or prepare for the 
presentation? 

‣ Assuming you don’t have time to do both, and you can 
accurately estimate the grade
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What is a game? — A first example

‣ Exam: 92 if you study, 80 if you don’t 

‣ Presentation: You need to do it with a partner 

‣If both of you prepare for it, both get 100 

‣If one of you prepares, both get 92 

‣If neither of you prepares, both get 84
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Basic ingredients of a game
‣ Participants in the game are called players 

‣ You and your partner 

‣ Each player has a set of options for how to behave, referred to as the 
player’s possible strategies 

‣ “Study for the exam” or “prepare for the presentation” 

‣ For each choice of strategies, each player receives a payoff 

‣ The average grade you get on the exam and the presentation
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A few assumptions to simplify the problem
‣ Everything the player cares about is summarized in the player’s payoffs 

‣ Each player knows everything about the structure of the game 

‣ his own list of strategies 

‣ who the other player is 

‣ the strategies available to the other player 

‣ what her payoff will be for any choice of strategies
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How do players select their strategies?

‣ Each player chooses a strategy to maximize her own payoff, 
given her beliefs about the strategy used by the other player 
— this is called rationality, and it implicitly includes two 
ideas: 

‣ each player wants to maximize payoff 

‣ each player actually succeeds in selecting the optimal 
strategy
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Exam or presentation?
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Exam or presentation?
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96

You

Your Partner
Presentation Exam

Presentation 90, 90 86, 92
Exam 92, 86 88, 88

Figure 6.1. Exam or Presentation?



Strictly dominant strategy
‣ A player has a strategy that is strictly better than all other options, 

regardless of what the other player does 

‣ In our example, studying for the exam is the strictly dominant 
strategy 

‣ A player will definitely play the strictly dominant strategy 

‣ This will be the outcome of the game
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But there’s something striking

‣ If you and your partner could somehow agree that you 
would both prepare for the presentation, you will each 
get 90 as an average, and be better off 

‣ But, despite that both of you understand this, the 
payoff of 90 cannot be achieved by rational play of this 
game! — why?
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A related story: the Prisoner’s Dilemma
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A related story: the Prisoner’s Dilemma
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Suspect 1

Suspect 2
NC C

NC −1, −1 −10, 0
C 0, −10 −4, −4

Figure 6.2. Prisoner’s Dilemma



The “arms race” between competitors
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Athlete 1

Athlete 2
Don’t Use Drugs Use Drugs

Don’t Use Drugs 3, 3 1, 4
Use Drugs 4, 1 2, 2

Figure 6.3. Performance-Enhancing Drugs



Best responses
‣ If S is a strategy chosen by Player 1, and T is a strategy chosen by 
Player 2 

‣ P1(S, T) denotes the payoff to Player 1 as a result of this pair of 
strategies (written in the payoff matrix in previous examples) 

‣ A strategy S for Player 1 is a best response to a strategy T for Player 2, 
if S produces at least as good a payoff as any other strategy paired 
with T:  

‣ It is a strict best response if: 
25
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We can make this concept precise with a bit of notation, as follows. If S is a strategy
chosen by Player 1, and T is a strategy chosen by Player 2, then there is an entry in
the payoff matrix corresponding to the pair of chosen strategies (S, T ). We will write
P1(S, T ) to denote the payoff to Player 1 as a result of this pair of strategies, and
P2(S, T ) to denote the payoff to Player 2 as a result of this pair of strategies. Now, we
say that a strategy S for Player 1 is a best response to a strategy T for Player 2 if S

produces at least as good a payoff as any other strategy paired with T :

P1(S, T ) ≥ P1(S ′, T )

for all other strategies S ′ of Player 1. Naturally, there is a completely symmetric
definition for Player 2, which we won’t write here. (In what follows, we present the
definitions from Player 1’s point of view, but there are direct analogues for Player 2 in
each case.)

Notice that this definition allows for multiple different strategies of Player 1 to be
tied as the best response to strategy T , which can make it difficult to predict which of
these multiple different strategies Player 1 will use. We can emphasize that one choice
is uniquely the best against T as follows; we say that a strategy S of Player 1 is a strict
best response to a strategy T for Player 2 if S produces a strictly higher payoff than
any other strategy paired with T :

P1(S, T ) > P1(S ′, T )

for all other strategies S ′ of Player 1. When a player has a strict best response to T , this
strategy is clearly the one we should expect her to play when faced with T .

The second concept, which was central to our analysis in the previous section, is
that of a strictly dominant strategy. We can formulate its definition in terms of best
responses as follows:! We say that a dominant strategy for Player 1 is a strategy that is a best response to

every strategy of Player 2.! We say that a strictly dominant strategy for Player 1 is a strategy that is a strict
best response to every strategy of Player 2.

In the previous section, we made the observation that if a player has a strictly dominant
strategy, then we can expect him or her to use it. The notion of a dominant strategy is
slightly weaker, since it can be tied as the best option against some opposing strategies.
As a result, a player could potentially have multiple dominant strategies, in which case
it may not be obvious which one should be played.

The analysis of the Prisoner’s Dilemma was facilitated by the fact that both players
had strictly dominant strategies, and so it was easy to reason about what was likely to
happen. But most settings won’t be this clear-cut; we now begin to look at games that
lack strictly dominant strategies.

A Game in Which Only One Player Has a Strictly Dominant Strategy. As a first
step, let’s consider a setting in which one player has a strictly dominant strategy and
the other one doesn’t. As a concrete example, we consider the following story.

Suppose two firms are each planning to produce and market a new product; these
two products will directly compete with each other. Let’s imagine that the population
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Dominant strategies
‣ We say that a dominant strategy for Player 1 is a strategy that is a 

best response to every strategy of Player 2 

‣ We say that a strictly dominant strategy for Player 1 is a strategy 
that is a strict best response to every strategy of Player 2 

‣ In the Prisoner’s Dilemma, both players had strictly dominant 
strategies 

‣ But this is not always the case!
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The game of the marketing strategies
‣ People who prefer a low-priced version account for 60% of the 
population, and people who prefer an upscale version account 
for 40% of the population 

‣ If a firm is the only one to produce a product for a given market 
segment, it gets all the sales  

‣ Firm 1 is the much more popular brand, and so when the two 
firms directly compete in a market segment, Firm 1 gets 80% of 
the sales and Firm 2 gets 20% of the sales
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100

Firm 1

Firm 2
Low-Priced Upscale

Low-Priced .48, .12 .60, .40
Upscale .40, .60 .32, .08

Figure 6.5. Marketing Strategy



Only one player has a strictly dominant strategy
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100

Firm 1

Firm 2
Low-Priced Upscale

Low-Priced .48, .12 .60, .40
Upscale .40, .60 .32, .08

Figure 6.5. Marketing Strategy

Assumption: the players have common knowledge about the 
game: they know its structure, they know that each of them 
knows its structure, and so on



What if neither player has a strictly dominant strategy?
‣ Two firms and three clients: A, B and C 

‣ If the two firms approach the same client, the client will give half its 
business to each 

‣ Firm 1 is too small to attract clients on its own, so if it approaches one client 
while Firm 2 approaches a different one, then Firm 1 gets a payoff of 0 

‣ If Firm 2 approaches client B or C on its own, it will get their full business.  
However, A is a larger client, and will only do business with both firms 

‣ Because A is a large client, doing business with it is worth 8, whereas doing 
business with B or C is worth 2
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The three-client game
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Firm 1

Firm 2
A B C

A 4, 4 0, 2 0, 2
B 0, 0 1, 1 0, 2
C 0, 0 0, 2 1, 1

Figure 6.6. Three-Client Game



The three-client game
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Firm 1

Firm 2
A B C

A 4, 4 0, 2 0, 2
B 0, 0 1, 1 0, 2
C 0, 0 0, 2 1, 1

Figure 6.6. Three-Client Game

Neither player has a strictly dominant strategy.



The main idea of the Nash Equilibrium is: 
even when there are no dominant 
strategies, we should expect players to use 
strategies that are best responses to each 
other.



Nash Equilibrium: definition
‣ Suppose that Player 1 chooses a strategy S and Player 2 
chooses a strategy T 

‣ We say that this pair of strategies, (S, T), is a Nash equilibrium 
if S is a best response to T, and T is a best response to S
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Nash Equilibrium: an equilibrium concept
‣ If the players choose strategies that are best responses to each 

other, then no player has an incentive to deviate to an alternative 
strategy 

‣ The system is in an equilibrium state, with no force pushing it toward 
a different outcome 

‣ The only Nash equilibrium in our example: (A, A)
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Multiple Equilibria: a coordination game
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 1, 1

Figure 6.7. Coordination Game



Multiple Equilibria: a coordination game
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 1, 1

Figure 6.7. Coordination Game

Two Nash equilibria: (PowerPoint, PowerPoint) 
and (Keynote, Keynote)



An unbalanced coordination game

‣ Still two Nash equilibria: (PowerPoint, PowerPoint) and (Keynote, 
Keynote) 

‣ But both may choose Keynote, as strategies to reach the equilibrium 
that gives higher payoffs to both are selected
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0
Keynote 0, 0 2, 2

Figure 6.8. Unbalanced Coordination Game



What if you don’t agree with your partner?
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 2 0, 0
Keynote 0, 0 2, 1

Figure 6.9. Battle of the Sexes



Multiple Equilibria: The Hawk-Dove Game
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Animal 1

Animal 2
D H

D 3, 3 1, 5
H 5, 1 0, 0

Figure 6.12. Hawk-Dove Game



Multiple Equilibria: The Hawk-Dove Game

‣ Two Nash equilibria: (D, H) and (H, D) 

‣ The concept of Nash equilibrium helps to narrow down the set of 
reasonable predictions, but it does not provide a unique prediction!
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Animal 2
D H

D 3, 3 1, 5
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Figure 6.12. Hawk-Dove Game



Matching pennies — a zero-sum game

‣ There is no Nash equilibrium for this game, if we treat each player as 
simply having the two strategies, H or T! 

‣ In real life, players try to make it hard for their opponents to predict 
what they will play — randomization
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Player 1

Player 2
H T

H −1, +1 +1, −1
T +1, −1 −1, +1

Figure 6.14. Matching Pennies



Mixed strategies
‣ Each player chooses a probability p (q) with which he or she 
will play H (and 1 - p (1 - q) for T) 

‣ We now changed the game to allow a set of strategies 
corresponding to the interval of numbers between 0 and 1 — 
mixed strategies 

‣ All previous examples show pure strategies 

‣ But how do we evaluate the payoffs?
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The expected value of the payoff
‣ If Player 1 chooses the pure strategy H while Player 2 
chooses a probability of q (to play H), as before, then the 
expected payoff to Player 1 is 

‣ Similarly, if Player 1 chooses the pure strategy T while Player 
2 chooses a probability of q, then the expected payoff to 
Player 1 is
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Payoffs from Mixed Strategies. With this new set of strategies, we also need to
determine the new set of payoffs. The subtlety in defining payoffs is that they are
now random quantities: each player gets +1 with some probability and −1 with the
remaining probability. When payoffs were numbers, it was obvious how to rank them:
bigger was better. Now that payoffs are random, it is not immediately obvious how to
rank them: we want a principled way to say that one random outcome is better than
another.

To think about this issue, let’s start by considering the Matching Pennies game from
Player 1’s point of view; we focus first on how she evaluates her two pure strategies of
definitely playing H or definitely playing T. Suppose that Player 2 chooses the strategy
q; that is, he commits to playing H with probability q and T with probability 1 − q.
Then if Player 1 chooses pure strategy H, she receives a payoff of −1 with probability
q (since the two pennies match with probability q, in which event she loses), and she
receives a payoff of +1 with probability 1 − q (since the two pennies don’t match with
probability 1 − q). Alternatively, if Player 1 chooses pure strategy T, she receives +1
with probability q, and −1 with probability 1 − q. So even if Player 1 uses a pure
strategy, her payoffs can still be random due to the randomization employed by Player
2. How should we decide which of H or T is more appealing to Player 1 in this case?

To rank random payoffs numerically, we attach a number to each distribution that
represents how attractive this distribution is to the player. Once numbers have been
assigned to distributions, we can then rank them according to their associated number.
The number we will use for this purpose is the expected value of the payoff. For
example, if Player 1 chooses the pure strategy H while Player 2 chooses a probability
of q, as before, then the expected payoff to Player 1 is

(−1)(q) + (1)(1 − q) = 1 − 2q.

Similarly, if Player 1 chooses the pure strategy T while Player 2 chooses a probability
of q, then the expected payoff to Player 1 is

(1)(q) + (−1)(1 − q) = 2q − 1.

We will assume that each player is seeking to maximize the expected payoff they get
from the choice of a mixed strategy. Although the expectation is a natural quantity, it is a
subtle question whether maximizing expectation is a reasonable modeling assumption
about the behavior of players. By now, however, there is a well-established foundation
for the assumption that players rank distributions over payoffs (where these payoffs
appropriately represent each player’s satisfaction with the outcome of the game) ac-
cording to their expected values [288, 363, 398], and so we will follow this assumption
here.

We have now defined the mixed-strategy version of the Matching Pennies game:
strategies are probabilities of playing H, and payoffs are the expectations of the payoffs
from the four pure outcomes (H, H), (H, T), (T, H), and (T, T). We can now ask whether
a Nash equilibrium exists for this richer version of the game.

Equilibrium with Mixed Strategies. We define a Nash equilibrium for the mixed-
strategy version just as we did for the pure-strategy version: it is a pair of strategies
(now probabilities) such that each is a best response to the other.
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The expected value of the payoff
‣ We assume that each player is seeking to maximize his 
expected payoff from the choice of a mixed strategy 

‣ The definition of Nash equilibrium for the mixed strategy 
version remains the same 

‣ The pair of strategies is now (p, q)
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Revisiting the matching pennies game
‣ No pure strategies can be part of a Nash equilibrium — why? 
‣ What is Player 1’s best response to strategy q used by Player 2? 
‣ If  
‣ then one of the pure strategies H or T is in fact the unique best response by Player 

1 to a play of q by Player 2 
‣ because one of (1 - 2q) or (2q - 1) is larger in this case, and so there is no point for 

Player 1 to put any probability on her weaker pure strategy 
‣ But we just said pure strategies cannot be part of a Nash equilibrium! 

‣ So we must have  
‣ (0.5, 0.5) is the unique Nash equilibrium for the game
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First, let’s observe that in the Matching Pennies game, no pure strategy can be part
of a Nash equilibrium. This reasoning is equivalent to what we did at the outset of
this section. Suppose, for example, that the pure strategy H (i.e., probability p = 1) by
Player 1 were part of a Nash equilibrium. Then Player 2’s unique best response would
be the pure strategy H as well (since Player 2 gets +1 whenever he matches). But H
by Player 1 is not a best response to H by Player 2, so in fact this couldn’t be a Nash
equilibrium. Analogous reasoning applies to the other possible pure strategies followed
by the two players. So we reach the natural conclusion that, in any Nash equilibrium,
both players must be using probabilities that are strictly between 0 and 1.

Next, let’s ask what Player 1’s best response should be to strategy q used by Player
2. Earlier we determined that the expected payoff to Player 1 from the pure strategy H
in this case is

1 − 2q,

while the expected payoff to Player 1 from the pure strategy T is

2q − 1.

Now here’s the key point: if 1 − 2q ̸= 2q − 1, then one of the pure strategies H or T is
in fact the unique best response by Player 1 to a play of q by Player 2. This holds simply
because one of 1 − 2q or 2q − 1 is larger in this case, and so there is no point for Player
1 to put any probability on her weaker pure strategy. But we have already established
that pure strategies cannot be part of any Nash equilibrium for Matching Pennies, and
because pure strategies are the best responses whenever 1 − 2q ̸= 2q − 1, probabilities
that make these two expectations unequal cannot be part of a Nash equilibrium either.

So we’ve concluded that, in any Nash equilibrium for the mixed-strategy version of
the Matching Pennies game, we must have

1 − 2q = 2q − 1,

or, in other words, q = 1/2. The situation is symmetric when we consider things from
Player 2’s point of view and evaluate the payoffs from a play of probability p by Player
1. We conclude from this that in any Nash equilibrium we must also have p = 1/2.

Thus, the pair of strategies p = 1/2 and q = 1/2 is the only possibility for a Nash
equilibrium. We can check that the strategies in this pair are in fact best responses
to each other. As a result, this is the unique Nash equilibrium for the mixed-strategy
version of Matching Pennies.

Interpreting the Mixed-Strategy Equilibrium for Matching Pennies. Having de-
rived the Nash equilibrium for this game, it’s useful to think about what it means and
how we can apply this reasoning to games in general.

First, let’s picture a concrete setting in which two people actually sit down to play
Matching Pennies, and each of them actually commits to behaving randomly according
to probabilities p and q, respectively. If Player 1 believes that Player 2 will play H
strictly more than half the time, then she should definitely play T – in which case
Player 2 should not be playing H more than half the time. The symmetric reasoning
applies if Player 1 believes that Player 2 will play T strictly more than half the time.
In neither case would we have a Nash equilibrium. So the point is that the choice of
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equilibrium. Analogous reasoning applies to the other possible pure strategies followed
by the two players. So we reach the natural conclusion that, in any Nash equilibrium,
both players must be using probabilities that are strictly between 0 and 1.

Next, let’s ask what Player 1’s best response should be to strategy q used by Player
2. Earlier we determined that the expected payoff to Player 1 from the pure strategy H
in this case is

1 − 2q,

while the expected payoff to Player 1 from the pure strategy T is

2q − 1.

Now here’s the key point: if 1 − 2q ̸= 2q − 1, then one of the pure strategies H or T is
in fact the unique best response by Player 1 to a play of q by Player 2. This holds simply
because one of 1 − 2q or 2q − 1 is larger in this case, and so there is no point for Player
1 to put any probability on her weaker pure strategy. But we have already established
that pure strategies cannot be part of any Nash equilibrium for Matching Pennies, and
because pure strategies are the best responses whenever 1 − 2q ̸= 2q − 1, probabilities
that make these two expectations unequal cannot be part of a Nash equilibrium either.

So we’ve concluded that, in any Nash equilibrium for the mixed-strategy version of
the Matching Pennies game, we must have

1 − 2q = 2q − 1,

or, in other words, q = 1/2. The situation is symmetric when we consider things from
Player 2’s point of view and evaluate the payoffs from a play of probability p by Player
1. We conclude from this that in any Nash equilibrium we must also have p = 1/2.

Thus, the pair of strategies p = 1/2 and q = 1/2 is the only possibility for a Nash
equilibrium. We can check that the strategies in this pair are in fact best responses
to each other. As a result, this is the unique Nash equilibrium for the mixed-strategy
version of Matching Pennies.

Interpreting the Mixed-Strategy Equilibrium for Matching Pennies. Having de-
rived the Nash equilibrium for this game, it’s useful to think about what it means and
how we can apply this reasoning to games in general.

First, let’s picture a concrete setting in which two people actually sit down to play
Matching Pennies, and each of them actually commits to behaving randomly according
to probabilities p and q, respectively. If Player 1 believes that Player 2 will play H
strictly more than half the time, then she should definitely play T – in which case
Player 2 should not be playing H more than half the time. The symmetric reasoning
applies if Player 1 believes that Player 2 will play T strictly more than half the time.
In neither case would we have a Nash equilibrium. So the point is that the choice of



Can a game have both mixed and pure-strategy 
equilibria?
‣ You will be indifferent between PowerPoint and Keynote if  

‣ Each of you chooses PowerPoint with probability 2/3!
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You

Your Partner
PowerPoint Keynote

PowerPoint 1, 1 0, 0

Keynote 0, 0 2, 2

Figure 6.17. Unbalanced coordination game.

pure and mixed equilibria. However, it is not hard to find such examples: in particular,
coordination and Hawk–Dove games with two pure equilibria will each also have a
third mixed equilibrium in which each player randomizes. As an example, let’s consider
the unbalanced coordination game from Section 6.5 (shown in Figure 6.17).

Suppose that you place a probability of p strictly between 0 and 1 on PowerPoint,
and your partner places a probability of q strictly between 0 and 1 on PowerPoint.
Then you’ll be indifferent between PowerPoint and Keynote if

(1)(q) + (0)(1 − q) = (0)(q) + (2)(1 − q),

or, in other words, if q = 2/3. Since the situation is symmetric from your partner’s
point of view, we also get p = 2/3. Thus, in addition to the two pure equilibria, we
also get an equilibrium in which each of you chooses PowerPoint with probability 2/3.
Note that, unlike the two pure equilibria, this mixed equilibrium comes with a positive
probability that the two of you will miscoordinate, but this is still an equilibrium, since
if you truly believe that your partner is choosing PowerPoint with probability 2/3 and
Keynote with probability 1/3, then you’ll be indifferent between the two options and
will get the same expected payoff however you choose.

6.9 Pareto Optimality and Social Optimality

In a Nash equilibrium, each player’s strategy is a best response to the other player’s
strategy. In other words, the players are optimizing individually. But this doesn’t mean
that, as a group, the players will necessarily reach an outcome that is in any sense good.
The exam-or-presentation game from the opening section, and related games like the
Prisoner’s Dilemma, serve as examples of this possibility. (We redraw the payoff matrix
for the basic exam-or-presentation game in Figure 6.18.)

It is interesting to classify outcomes in a game not just by their strategic or equi-
librium properties, but also by whether they are “good for society.” To reason about
this latter issue, we first need a way of making it precise. We now discuss two useful
candidates for such a definition.

You

Your Partner
Presentation Exam

Presentation 90, 90 86, 92

Exam 92, 86 88, 88

Figure 6.18. Exam or presentation?
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In a Nash equilibrium, each player’s strategy is a best response to the other player’s
strategy. In other words, the players are optimizing individually. But this doesn’t mean
that, as a group, the players will necessarily reach an outcome that is in any sense good.
The exam-or-presentation game from the opening section, and related games like the
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What’s good for the society?
‣ In a Nash equilibrium, each player’s strategy is a best response to 

the other player’s strategy — they optimize individually 

‣ but we have shown that, as a group, the outcome may not be 
the best 

‣ We wish to classify outcomes in a game by whether they are 
“good for society” 

‣ but we need a precise definition of what we mean by this!
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A choice of strategies — one by each player — is 
Pareto-optimal if there is no other choice of 
strategies in which all players receive payoffs at 
least as high, and at least one player receives a 
strictly higher payoff.



Which choice of strategies is Pareto optimal?
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Figure 6.1. Exam or Presentation?



Examples of Pareto optimality
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Pareto-optimal

Nash equilibrium



Social optimality
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A choice of strategies — one by each 
player — is socially optimal if it 
maximizes the sum of the players’ 
payoffs.
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Social optimality

53

If an outcome is socially optimal, it 
must be Pareto-optimal, but not the 
other way around.
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Multiplayer games

‣ A game with n players, named 1, 2, ..., n, each with a set of 
possible strategies 

‣ An outcome (or joint strategy) is a choice of a strategy for each 
player 

‣ each player i has a payoff function Pi that maps outcomes of the 
game to a numerical payoff for i: for each outcome consisting of 
strategies (S1,S2,...,Sn), there is a payoff Pi(S1,S2,...,Sn) to player i
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Multiplayer games

‣ A strategy Si is a best response by Player i to a choice of 
strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by all the other players if: 

for all other possible strategies Si’ available to player i. 

‣ An outcome consisting of strategies (S1, S2, . . . , Sn) is a Nash 
equilibrium if each strategy it contains is a best response to all 
the others
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For example, the exam-or-presentation game has three outcomes that are Pareto-
optimal, but only one of these is the social optimum.

Finally, of course, it’s not the case that Nash equilibria are at odds with the goal of
social optimality in every game. For example, in the version of the exam-or-presentation
game with an easier exam, yielding the payoff matrix that we saw earlier in Figure 6.4,
the unique Nash equilibrium is also the unique social optimum.

6.10 Advanced Material: Dominated Strategies
and Dynamic Games

In this final section, we consider two further issues that arise in the analysis of games.
First, we study the role of dominated strategies in reasoning about behavior in a game;
we find that the analysis of this type of strategy can provide a way to make predictions
about play based on rationality, even when no player has a dominant strategy. Second,
we discuss how to reinterpret the strategies and payoffs in a game to deal with situations
in which play actually occurs sequentially through time.

Before doing this, however, we begin with a formal definition for games that have
more than two players.

A. Multiplayer Games

A multiplayer game consists, as in the two-player case, of a set of players, a set of
strategies for each player, and a payoff to each player for each possible outcome.

Specifically, suppose that a game has n players named 1, 2, . . . , n. Each player has
a set of possible strategies. An outcome (or joint strategy) of the game is a choice of
a strategy for each player. Finally, each player i has a payoff function Pi that maps
outcomes of the game to a numerical payoff for i: for each outcome consisting of
strategies (S1, S2, . . . , Sn), there is a payoff Pi(S1, S2, . . . , Sn) to player i.

Now we can say that a strategy Si is a best response by Player i to a choice of
strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by all the other players if

Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn) ≥ Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn)

for all other possible strategies S ′
i available to player i.

Finally, an outcome consisting of strategies (S1, S2, . . . , Sn) is a Nash equilibrium
if each strategy it contains is a best response to all the others.

B. Dominated Strategies and Their Role in Strategic Reasoning

In Sections 6.2 and 6.3, we discussed (strictly) dominant strategies – strategies that are a
(strict) best response to every possible choice of strategies by the other players. Clearly
if a player has a strictly dominant strategy then this is the strategy she should employ.
But we also saw that, even for two-player, two-strategy games, it is common to have
no dominant strategies. This fact holds even more strongly for larger games: although
dominant and strictly dominant strategies can exist in games with many players and
many strategies, they are rare.



Strictly dominated strategies
‣ We understand that if a player has a strictly dominant strategy, it will play it — but 

this is pretty rare! 
‣ Even if a player does not have a dominant strategy, she may still have strategies 

that are dominated by other strategies 
‣ A strategy is strictly dominated if there is some other strategy available to the 

same player that produces a strictly higher payoff in response to every choice 
of strategies by the other players 
‣ Strategy Si for player i is strictly dominated if there is another strategy Si′ for 

player i such that:  

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
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A B C D E F

Figure 6.19. In the Facility Location game on this six-node path, each player has strictly
dominated strategies but no dominant strategy.

However, even if a player does not have a dominant strategy, she may still have
strategies that are dominated by other strategies. In this section, we consider the role
that such dominated strategies play in reasoning about behavior in games.

We begin with a formal definition: a strategy is strictly dominated if there is some
other strategy available to the same player that produces a strictly higher payoff in
response to every choice of strategies by the other players. In the notation we’ve just
developed, strategy Si for player i is strictly dominated if there is another strategy S ′

i

for player i such that

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) > Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
Now, in the two-player, two-strategy games we’ve been considering thus far, a

strategy is strictly dominated precisely when the other strategy available to the same
player is strictly dominant. In this context, it wouldn’t make sense to study strictly
dominated strategies as a separate concept. However, if a player has many strategies,
then it’s possible for a strategy to be strictly dominated without any strategy being
dominant. In such cases, strictly dominated strategies can play a very useful role in
reasoning about play in a game. In particular, we will see that there are games in
which there are no dominant strategies, but where the outcome of the game can still
be uniquely predicted using the structure of the dominated strategies. In this way,
reasoning based on dominated strategies forms an intriguing intermediate approach
between dominant strategies and Nash equilibrium: on the one hand, it can be more
powerful than reasoning based solely on dominant strategies; but on the other hand,
it still relies only on the premise that players seek to maximize payoffs and doesn’t
require the introduction of an equilibrium notion.

To see how this approach works, it’s useful to introduce it in the context of a basic
example.

Example: The Facility Location Game. Our example is a game in which two firms
compete through their choice of locations. Suppose that two firms are each planning to
open a store in one of six towns located along six consecutive exits on a highway. We
can represent the arrangement of these towns using a six-node graph as in Figure 6.19.

Now, based on leasing agreements, Firm 1 has the option of opening its store in
any of towns A, C, or E, while Firm 2 has the option of opening its store in any of
towns B, D, or F. These decisions will be executed simultaneously. Once the two stores
are opened, customers from the towns will go to the store that is closer to them. For
example, if Firm 1 opens its store in town C and Firm 2 opens its store in town B,
then the store in town B will attract customers from A and B, while the store in town
C will attract customers from C, D, E, and F. If we assume that the towns contain an
equal number of customers, and that payoffs are directly proportional to the number of



The Facility Location Game: dominated strategies
Two firms are each planning to open a store in one of six towns
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Figure 6.19. In the Facility Location game on this six-node path, each player has strictly
dominated strategies but no dominant strategy.

However, even if a player does not have a dominant strategy, she may still have
strategies that are dominated by other strategies. In this section, we consider the role
that such dominated strategies play in reasoning about behavior in games.

We begin with a formal definition: a strategy is strictly dominated if there is some
other strategy available to the same player that produces a strictly higher payoff in
response to every choice of strategies by the other players. In the notation we’ve just
developed, strategy Si for player i is strictly dominated if there is another strategy S ′

i

for player i such that

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) > Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
Now, in the two-player, two-strategy games we’ve been considering thus far, a

strategy is strictly dominated precisely when the other strategy available to the same
player is strictly dominant. In this context, it wouldn’t make sense to study strictly
dominated strategies as a separate concept. However, if a player has many strategies,
then it’s possible for a strategy to be strictly dominated without any strategy being
dominant. In such cases, strictly dominated strategies can play a very useful role in
reasoning about play in a game. In particular, we will see that there are games in
which there are no dominant strategies, but where the outcome of the game can still
be uniquely predicted using the structure of the dominated strategies. In this way,
reasoning based on dominated strategies forms an intriguing intermediate approach
between dominant strategies and Nash equilibrium: on the one hand, it can be more
powerful than reasoning based solely on dominant strategies; but on the other hand,
it still relies only on the premise that players seek to maximize payoffs and doesn’t
require the introduction of an equilibrium notion.

To see how this approach works, it’s useful to introduce it in the context of a basic
example.

Example: The Facility Location Game. Our example is a game in which two firms
compete through their choice of locations. Suppose that two firms are each planning to
open a store in one of six towns located along six consecutive exits on a highway. We
can represent the arrangement of these towns using a six-node graph as in Figure 6.19.

Now, based on leasing agreements, Firm 1 has the option of opening its store in
any of towns A, C, or E, while Firm 2 has the option of opening its store in any of
towns B, D, or F. These decisions will be executed simultaneously. Once the two stores
are opened, customers from the towns will go to the store that is closer to them. For
example, if Firm 1 opens its store in town C and Firm 2 opens its store in town B,
then the store in town B will attract customers from A and B, while the store in town
C will attract customers from C, D, E, and F. If we assume that the towns contain an
equal number of customers, and that payoffs are directly proportional to the number of
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Firm 1

Firm 2
B D F

A 1, 5 2, 4 3, 3

C 4, 2 3, 3 4, 2

E 3, 3 2, 4 5, 1

Figure 6.20. Facility location game.

customers, this would result in a payoff of 4 for Firm 1 and 2 for Firm 2, since Firm 1
claims customers from four towns while Firm 2 claims customers from the remaining
two towns. Reasoning in this way about the number of towns claimed by each store,
based on proximity to their locations, we get the payoff matrix shown in Figure 6.20.

We refer to this as the Facility Location game. The competitive location of facilities
is a topic that has been the subject of considerable study in operations research and
other areas [135]. Moreover, closely related models have been used when the entities
being “located” are not stores along a one-dimensional highway but the positions of
political candidates along a one-dimensional ideological spectrum – here too, choosing
a certain position relative to one’s electoral opponent can attract certain voters while
alienating others [350]. We will return to issues related to political competition, though
in a slightly different form, in Chapter 23.

We can verify that neither player has a dominant strategy in this game. For example,
if Firm 1 locates at node A, then the strict best response of Firm 2 is B, while if
Firm 1 locates at node E, then the strict best response of Firm 2 is D. The situation is
symmetric if we interchange the roles of the two firms (and read the graph from the
other direction).

Dominated Strategies in the Facility Location Game. We can make progress in
reasoning about the behavior of the two players in the Facility Location game by
thinking about their dominated strategies. First, notice that A is a strictly dominated
strategy for Firm 1: in any situation where Firm 1 has the option of choosing A, it
would receive a strictly higher payoff by choosing C. Similarly, F is a strictly dominated
strategy for Firm 2: in any situation where Firm 1 has the option of choosing F, it would
receive a strictly higher payoff by choosing D.

It is never in a player’s interest to use a strictly dominated strategy; some strategy
dominates it. Therefore, Firm 1 isn’t going to use strategy A. Moreover, since Firm 2
knows the structure of the game, including Firm 1’s payoffs, Firm 2 knows that Firm
1 won’t use strategy A. It can be effectively eliminated from the game. The same
reasoning shows that F can be eliminated from the game.

We now have a smaller instance of the Facility Location game, involving only the
four nodes B, C, D, and E and the payoff matrix shown in Figure 6.21.

Now something interesting happens. Strategies B and E weren’t previously strictly
dominated: they were useful in case the other player used A or F, respectively. But
with A and F eliminated, strategies B and E now are strictly dominated – by the same
reasoning, both players know they won’t be used, and so we can eliminate them from
the game. This gives us the even smaller game shown in Figure 6.22.



Iterated deletion of strictly dominated strategies
‣ With A and F eliminated, B and E becomes strictly dominated strategies! 

‣ The outcome of the game is (C, D) — which can be proved to be a Nash 
equilibrium 
‣ Obtained by going through a process called iterated deletion of strictly 

dominated strategies
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Firm 1

Firm 2
B D

C 4, 2 3, 3

E 3, 3 2, 4

Figure 6.21. Smaller Facility Location game.

At this point, there is a very clear prediction for the play of the game: Firm 1 will
play C, and Firm 2 will play D. And the reasoning that led to this outcome is clear:
after repeatedly removing strategies that were (or became) strictly dominated, we were
left with only a single plausible option for each player.

The process that led us to this reduced game is called the iterated deletion of strictly
dominated strategies, and we will next describe it in its full generality. Before doing
this, however, it’s worth making some observations about the example of the Facility
Location game.

First, the pair of strategies (C,D) is indeed the unique Nash equilibrium in the
game, and when we later discuss the iterated deletion of strictly dominated strategies
in general, we will see that the process is an effective way to search for Nash equilibria.
But beyond this, it is also an effective way to justify the Nash equilibria that one finds.
When we first introduced the concept of Nash equilibrium, we observed that it couldn’t
be derived purely from an assumption of rationality on the part of the players; rather,
we had to assume further that play of the game would be found at an equilibrium from
which neither player had an incentive to deviate. On the other hand, when a unique
Nash equilibrium emerges from the iterated deletion of strictly dominated strategies, it
is in fact a prediction based purely on the assumptions of the players’ rationality and
their knowledge of the game, since all the steps that led to it were based simply on
removing strategies that were strictly inferior to others from the perspective of payoff
maximization.

A final observation is that iterated deletion can in principle be carried out for a very
large number of steps, a fact that can be illustrated by a simple modification of the
Facility Location game. Suppose that instead of a path of length 6, we had a path of
length 1,000, with the options for the two firms still strictly alternating along this path
(constituting 500 possible strategies for each player). Then it would still be the case
that only the outer two nodes would be strictly dominated; after their removal, we’d
have a path of length 998 in which the two new outer nodes had now become strictly
dominated. We can continue removing nodes in this way and, after 499 steps of such
reasoning, we have a game in which only the 500th and 501st nodes have survived as
strategies. This is the unique Nash equilibrium for the game, and this unique prediction
can be justified by a very long sequence of deletions of dominated strategies.

Firm 1

Firm 2
D

C 3, 3

Figure 6.22. Even smaller Facility Location game.

Nash equilibrium



Weakly dominated strategies
‣ A strategy is weakly dominated if there is another strategy available that does at least 

as well no matter what the other players do, and does strictly better against some joint 
strategy of the other players 

‣ Strategy Si for player i is weakly dominated if there is another strategy Si′ for player i 
such that:  

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players, and 

for at least one choice of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
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Figure 6.19. In the Facility Location game on this six-node path, each player has strictly
dominated strategies but no dominant strategy.

However, even if a player does not have a dominant strategy, she may still have
strategies that are dominated by other strategies. In this section, we consider the role
that such dominated strategies play in reasoning about behavior in games.

We begin with a formal definition: a strategy is strictly dominated if there is some
other strategy available to the same player that produces a strictly higher payoff in
response to every choice of strategies by the other players. In the notation we’ve just
developed, strategy Si for player i is strictly dominated if there is another strategy S ′

i

for player i such that

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) > Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
Now, in the two-player, two-strategy games we’ve been considering thus far, a

strategy is strictly dominated precisely when the other strategy available to the same
player is strictly dominant. In this context, it wouldn’t make sense to study strictly
dominated strategies as a separate concept. However, if a player has many strategies,
then it’s possible for a strategy to be strictly dominated without any strategy being
dominant. In such cases, strictly dominated strategies can play a very useful role in
reasoning about play in a game. In particular, we will see that there are games in
which there are no dominant strategies, but where the outcome of the game can still
be uniquely predicted using the structure of the dominated strategies. In this way,
reasoning based on dominated strategies forms an intriguing intermediate approach
between dominant strategies and Nash equilibrium: on the one hand, it can be more
powerful than reasoning based solely on dominant strategies; but on the other hand,
it still relies only on the premise that players seek to maximize payoffs and doesn’t
require the introduction of an equilibrium notion.

To see how this approach works, it’s useful to introduce it in the context of a basic
example.

Example: The Facility Location Game. Our example is a game in which two firms
compete through their choice of locations. Suppose that two firms are each planning to
open a store in one of six towns located along six consecutive exits on a highway. We
can represent the arrangement of these towns using a six-node graph as in Figure 6.19.

Now, based on leasing agreements, Firm 1 has the option of opening its store in
any of towns A, C, or E, while Firm 2 has the option of opening its store in any of
towns B, D, or F. These decisions will be executed simultaneously. Once the two stores
are opened, customers from the towns will go to the store that is closer to them. For
example, if Firm 1 opens its store in town C and Firm 2 opens its store in town B,
then the store in town B will attract customers from A and B, while the store in town
C will attract customers from C, D, E, and F. If we assume that the towns contain an
equal number of customers, and that payoffs are directly proportional to the number of
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Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 3, 3 0, 3

Hunt Hare 3, 0 3, 3

Figure 6.23. Stag Hunt: a version with a weakly dominated strategy.

strictly dominated strategies being removed in each round, this approach is not essential.
One can show that eliminating strictly dominated strategies in any order results in the
same set of surviving strategies.

Weakly Dominated Strategies. It is also natural to ask about notions that are slightly
weaker than our definition of strictly dominated strategies. One fundamental definition
in this spirit is that of a weakly dominated strategy. We say that a strategy is weakly
dominated if there is another strategy that does at least as well no matter what the other
players do, and does strictly better against some joint strategy of the other players. In
our notation from earlier, we say that a strategy Si for player i is weakly dominated if
there is another strategy S ′

i for player i such that

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) ≥ Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players, and

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) > Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for at least one choice of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
For strictly dominated strategies, the argument for deleting them was compelling:

they are never best responses. For weakly dominated strategies, the issue is more subtle.
Such strategies could be best responses to some joint strategy by the other players. So
a rational player could play a weakly dominated strategy, and in fact Nash equilibria
can involve weakly dominated strategies.

There are simple examples that make this clear even in two-player, two-strategy
games. Consider, for example, a version of the Stag Hunt game in which the payoff
from successfully catching a stag is the same as the payoff from catching a hare, as
shown in Figure 6.23.

In this case, Hunt Stag is a weakly dominated strategy, since each player always
does at least as well, and sometimes strictly better, by playing Hunt Hare. Nevertheless,
the outcome in which both players choose Hunt Stag is a Nash equilibrium, since each
is playing a best response to the other’s strategy. Thus, deleting weakly dominated
strategies is not generally a safe thing to do if one wants to preserve the essential
structure of the game: such deletion operations can destroy Nash equilibria.

Of course, it might seem reasonable to suppose that a player should not play ac-
cording to equilibrium involving a weakly dominated strategy – such as (Hunt Stag,
Hunt Stag) – if he had any uncertainty about what the other players would do; after
all, why not use an alternate strategy that is at least as good in every eventuality? But
Nash equilibrium does not take into account this idea of uncertainty about the behav-
ior of others, and hence has no way to rule out such outcomes. In the next chapter,
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172 games

Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 3, 3 0, 3

Hunt Hare 3, 0 3, 3

Figure 6.23. Stag Hunt: a version with a weakly dominated strategy.

strictly dominated strategies being removed in each round, this approach is not essential.
One can show that eliminating strictly dominated strategies in any order results in the
same set of surviving strategies.

Weakly Dominated Strategies. It is also natural to ask about notions that are slightly
weaker than our definition of strictly dominated strategies. One fundamental definition
in this spirit is that of a weakly dominated strategy. We say that a strategy is weakly
dominated if there is another strategy that does at least as well no matter what the other
players do, and does strictly better against some joint strategy of the other players. In
our notation from earlier, we say that a strategy Si for player i is weakly dominated if
there is another strategy S ′

i for player i such that

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) ≥ Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for all choices of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players, and

Pi(S1, S2, . . . , Si−1, S
′
i , Si+1, . . . , Sn) > Pi(S1, S2, . . . , Si−1, Si, Si+1, . . . , Sn)

for at least one choice of strategies (S1, S2, . . . , Si−1, Si+1, . . . , Sn) by the other players.
For strictly dominated strategies, the argument for deleting them was compelling:

they are never best responses. For weakly dominated strategies, the issue is more subtle.
Such strategies could be best responses to some joint strategy by the other players. So
a rational player could play a weakly dominated strategy, and in fact Nash equilibria
can involve weakly dominated strategies.

There are simple examples that make this clear even in two-player, two-strategy
games. Consider, for example, a version of the Stag Hunt game in which the payoff
from successfully catching a stag is the same as the payoff from catching a hare, as
shown in Figure 6.23.

In this case, Hunt Stag is a weakly dominated strategy, since each player always
does at least as well, and sometimes strictly better, by playing Hunt Hare. Nevertheless,
the outcome in which both players choose Hunt Stag is a Nash equilibrium, since each
is playing a best response to the other’s strategy. Thus, deleting weakly dominated
strategies is not generally a safe thing to do if one wants to preserve the essential
structure of the game: such deletion operations can destroy Nash equilibria.

Of course, it might seem reasonable to suppose that a player should not play ac-
cording to equilibrium involving a weakly dominated strategy – such as (Hunt Stag,
Hunt Stag) – if he had any uncertainty about what the other players would do; after
all, why not use an alternate strategy that is at least as good in every eventuality? But
Nash equilibrium does not take into account this idea of uncertainty about the behav-
ior of others, and hence has no way to rule out such outcomes. In the next chapter,

both outcomes are Nash equilibria!



Required reading: Chapter 6


